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ABSTRACT. The social foraging behavior of Escherichia coli has recently 

received great attention and it has been employed to solve complex search 

optimization problems. This paper presents a modified bacterial foraging 

optimization BFO algorithm, ICDEOA (Improved Chemotaxis Differential 

Evolution Optimization Algorithm), to cope with premature convergence of 

reproduction operator. In ICDEOA, reproduction operator of BFOA is re-

placed with probabilistic reposition operator to enhance the intensification 

and the diversification of the search space. ICDEOA was compared with 

state-of-the-art DE and non-DE variants on 7 numerical functions of the 

2014 Congress on Evolutionary Computation (CEC 2014). Simulation re-

sults of CEC 2014 benchmark functions reveal that ICDEOA performs bet-

ter than that of competitors in terms of the quality of the final solution for 

high dimensional problems. 

Keywords: bacterial foraging optimization algorithm (BFOA), differential 

evolution (DE), computational chemotaxis, hybrid optimization, improved 

chemotaxis differential evolution optimization algorithm (ICDEOA) 

INTRODUCTION 

Nature and natural living forms have been investigated by several researchers in order to 

get insight into solving complex real-world problems for a few decades. Natural selection has 

a tendency to get rid of living organisms with poor foraging strategies and supports the spread 

of genes of living organisms with successful foraging. These evolutionary concepts have 

guided Kevin M. Passino to propose a new bio-inspired optimization method known as the 

bacterial foraging optimization algorithm (BFOA) which attempts to maximize the energy 

intake per unit time (Passino, 2002; Liu et al., 2002). In order to increase the BFOA success, a 

number of improvements have been carried out on hybridization with evolutionary algorithms 

(EA) (Kim et al., 2007; Biswas et al., 2007a; Biswas et al., 2007b). So far, BFOA has been 

successfully applied in applications in optimal control design (Passino, 2002), harmonic esti-

mation (Mishra, 2005).  

In this paper, a modified approach named ICDEOA is introduced. ICDEOA improves the 

optimization performance of CDEOA (Yıldız et al., 2015). CDEOA incorporates two strate-

gies into the chemotaxis step of BFOA: weak bacterium’s search and strong bacterium’s for-

aging. The weak bacteria’s explorative capability is boosted by randomly moving to new po-

sitions whereas the strong bacteria’s exploitation capability is boosted by incorporating the 

ideas of differential evolution (DE) operators (Yıldız et al., 2015). In our contribution, in 

place of reproduction operator of BFOA, we employed the probabilistic repositioning opera-

http://www.uum.edu.my/


Proceedings of the 5th International Conference on Computing and Informatics, ICOCI 2015 

11-13 August, 2015 Istanbul, Turkey. Universiti Utara Malaysia (http://www.uum.edu.my ) 
Paper No.  

174 

 

313 

 

tor which acts based on the bacterium’s cost. If the cost of a bacterium is high, the bacterium 

most likely will change its position. If the cost is low, the bacterium is moved to the vicinity 

of the best bacterium.  

Reproduction operator of CDEOA possesses intensive exploitation capability which may 

result in premature convergence since it chooses the best of the population and kills the rest 

for the next generation. By incorporating probabilistic repositioning operator into CDEOA, 

we prevent not only the premature convergence problem of CDEOA, but also diversify the 

half of the population. The simulation results reveal that ICDEOA has shown superior per-

formance in unimodal and multimodal functions in terms of the quality of final solution.  

CLASSICAL BACTERIAL FORAGING OPTIMIZATION ALGORITHM (BFOA) 

Passino (2002) establishes the bacterial foraging system on three mechanisms such as 

chemotaxis, reproduction, and elimination-dispersal. Below, we define these processes. 

Chemotaxis 

An E.coli bacterium makes successive tumble and swim steps via flagella. The tumble 

specifies the random direction of a swim, whereas swim is the successive step in the same 

direction. 𝜃(𝑖, 𝑗, 𝑘, 𝑙) represents the position of the 𝑖th bacterium at 𝑗th chemotactic, 𝑘th re-

productive, and 𝑙th elimination-dispersal step. The equations Eq. (1) and Eq. (2) represent the 

position of a bacterium in the next step, 

𝑡(𝑗) =  
∆(𝑖)

√∆𝑇 (𝑖) ∗ ∆(𝑖)
 (5) 

𝜃(𝑖, 𝑗 + 1, 𝑘, 𝑙) =  𝜃(𝑖, 𝑗, 𝑘, 𝑙) + 𝐶(𝑖) ∗  𝑡(𝑗) (2) 

where 𝐶(𝑖) is a fixed predefined length of the unit walk, 𝑡(𝑗). Eq. (1) defines the direction of 

the 𝑗th step, and  ∆(𝑖) generates a random vector whose elements are between [-1, 1].  

Reproduction 

During a bacterium’s life-time, the objective function values which is health of a bacte-

rium are added to each other. Depending on each bacterium’s health, all the bacteria in the 

population are ranked from the lowest health (the healthiest ones) to largest health. The 

healthiest population 50% which has less function value asexually split into two bacteria and 

then are placed at the same positions. The rest of the bacteria 50% with poor health is thrown 

away to keep the number of population fixed. 

Elimination and dispersal 

In case that the bacteria are subjected to gradual or sudden changes such as significant rise 

of temperature or sudden flow of water, elimination and dispersal events may take place. 

BFOA mimics these events in such a way that some bacteria are liquidated randomly with a 

predetermined fixed probability value while the new replacements are randomly initialized 

over the search space. 

DIFFERENTIAL EVOLUTION (DE)  

Differential evolution (DE) is an evolutionary optimization technique which employs mu-

tation, crossover, and selection operators to solve complex problems. For each generation 𝐺, a 

new population is generated from the current population, 𝑥𝑖,𝐺|𝑖 = 1,2, … , 𝑁 where 𝑁 is the size 

of the population. The initial population is randomly generated according to a uniform distri-

bution. After initialization of the population, DE undergoes mutation, crossover, and selection 

operators (Storn et al., 1997). 
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Mutation 

At each generation 𝐺, a mutant vector 𝑣𝑖,𝐺  is generated for each target vector 𝑥𝑖,𝐺 , 𝑖 =
1,2,… ,𝑁 in the current population. The one of the mutation strategies (Eq. (3)) is as follows: 

 “DE/best/1” 

𝑣𝑖,𝐺 = 𝑥𝑏𝑒𝑠𝑡,𝐺 + 𝐹 ∗ (𝑥𝑟1,𝐺 − 𝑥𝑟2,𝐺) (3) 

where 𝑥𝑏𝑒𝑠𝑡,𝐺 is the best vector in the current generation 𝐺, 𝑟1 and 𝑟2 are different integers 

from each other which are randomly chosen from the current population and are different 

from ith index, and 𝐹 is the mutation scaling factor which usually ranges [0,1+].  

Crossover 

After mutation process, the target vector 𝑥𝑖,𝐺 is combined with the mutated vector 𝑣𝑖,𝐺 and a 

new trial vector 𝑢𝑖,𝐺 = (𝑢𝑖,1,𝐺 , 𝑢𝑖,2,𝐺 , … , 𝑢𝑖,𝐷,𝐺) is generated by Eq. (4): 

𝑢𝑖,𝑗,𝐺 =  {
𝑣𝑖,𝑗,𝐺 , 𝑖𝑓 𝑅𝑗(0,1)  ≤  𝐶𝑟  𝑜𝑟 𝑗 = 𝑗𝑟𝑎𝑛𝑑 ,

𝑥𝑖,𝑗,𝐺 , 𝑖𝑓 𝑅𝑗(0,1)   >  𝐶𝑟 ,                       
 

(4) 

where 𝑗 = 1,2,… , 𝐷,  𝑗𝑟𝑎𝑛𝑑 is a randomly chosen integer within the range of  [1,D],  𝑅𝑗(0,1) 

is uniform random number between 0 and 1 for each  j, and  𝐶𝑟 ∈ [0,1] is the predetermined 

crossover rate parameter. 

Selection 

The selection process selects the better of the parent vector 𝑥𝑖,𝐺  and the trial vector 𝑢𝑗,𝐺. In a 

minimization problem, the selected parent vector in the next generation is given by Eq. (5), 

𝑥𝑖,𝐺+1 =  {
𝑢𝑖,𝐺 , 𝑖𝑓 𝑓(𝑢𝑖,𝐺) < 𝑓(𝑥𝑖,𝐺),

𝑥𝑖,𝐺 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,                   
 

(5) 

where 𝑓(⋅) is the cost function. If the trial vector 𝑢𝑖,𝐺 yields a better cost function value than 

𝑥𝑖,𝐺, it replaces its parent in the next generation; or the parent is retained in the search space. 

ICDEOA (IMPROVED CDEOA)  

The concept of ICDEOA depends on two approaches: a) making “weak” bacteria more di-

versified, where “weak” bacteria are the ones in positions with nutrient-poor medium, and b) 

making “strong” bacteria more intensified, where “strong” bacteria are the ones in positions 

with nutrient-rich medium. 

Based on the aforementioned approaches, we introduce a new operator, probabilistic repo-

sitioning, which balances the exploration and the exploitation trade-off. The reproduction 

process of classical BFOA is replaced with probabilistic repositioning operator. Unlike the 

reproduction process, probabilistic repositioning operator retains the strong bacteria in the 

vicinity of the best bacterium, whereas the weak bacteria are dispersed to the random posi-

tions in the search space. 
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Figure 1. Pseudocode of ICDEOA 

In our contribution, in addition to the ideas of CDEOA, all bacteria are graded according 

to their cost function values at the end of the each chemotaxis step. The bacterium with high 

scaled cost which is far away from the global optimum will be dispersed to a random position 

to make the search process more diversified (line 69-70 in Figure 1). On the other hand, the 

bacterium with low scaled cost which is close to the global optimum will approach to the best 

bacterium’s vicinity to make the search process more focused (line 72 in Figure 1).  

EXPERIMENTAL STUDY 

The study introduced in this paper aims to test the quality of the final solution at the end of a 

fixed number of function evaluations (FEs). The maximum number of FEs was set to 3 × 10
5
 

for 30-𝐷 functions with the population size 𝑆 = 50. The error function values were given in 

the Table 1 according to (𝐹(𝑥) − 𝐹(𝑥∗)) for evaluating the success of five algorithms, where 

�⃗�  is the best value of the bacterium in a run and �⃗�∗ is the global best of the test function. 

"Mean Error" and "Std Dev" in Table 1 indicate the average and the standard deviation of the 

error values obtained in 25 runs.  

The CEC’14 test functions are as follows: 𝐹1=Rotated high conditioned Elliptic, 𝐹2=Rotated 

Bent Cigar, 𝐹3=Rotated discus, 𝐹4= Shifted and rotated Rosenbrock, 𝐹5=Shifted and rotated 

Ackley, 𝐹6=Shifted and rotated Weierstrass, and 𝐹7=Shifted and rotated Griewank (Liang et 

al., 2013). 

Comparison with three State-of-the-art DE and one non-DE 

The performance of the ICDEOA algorithm was compared with OptBees (Maia et al. 2013), 

FERDE (Qu et al. 2014), RSDE (Xu et al. 2014), and CDEOA (Yıldız et al. 2015).  

1) Unimodal Functions 𝐹1 − 𝐹3.  
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As presented in Table 1, overall, ICDEOA is better than that of four methods on these 

three unimodal functions. It outperforms OptBees on 2, FERDE on 2, RSDE on 1, and 

CDEOA on 2 test functions. In contrast, FERDE and RSDE perform better than ICDEOA 

on test function 𝐹1 . ICDEOA also exhibits similar performance with OptBees, RSDE, and 

CDEOA on test function 𝐹2 . 

2) Multimodal Functions 𝐹4 − 𝐹7. 

On these four multimodal test functions, ICDEOA outperforms OptBees on 3, FERDE on 

2, RSDE on 2, and CDEOA on 2 test functions. FERDE, RSDE, and CDEOA exhibit bet-

ter performance than ICDEOA on test function 𝐹7. Overall, ICDEOA performs better than 

OptBees, FERDE, RSDE, and CDEOA. 

Table 1. Comparison of OptBees, FERDE, RSDE, CDEOA, and ICDEOA 

Functions 

OptBees FERDE RSDE CDEOA ICDEOA 

Mean Error 

Std Dev 

Mean Error 

Std Dev 

Mean Error 

Std Dev 

Mean Error 

Std Dev 

Mean Errror 

Std Dev 

U
n

im
o

d
a

l 

F
u

n
ct

io
n

s F1 
8.57E+04 

6.96E+02 
- 

5.41E+02 

6.40E+02 
+ 

1.50E+03 

1.70E+03 
+ 

4.64E+04 

4.26E+04 
- 

7.32E+03 

2.45E+03 

F2 
0.00E+00 

6.40E-02 
≈ 

2.39E03 

3.24E-03 
- 0.00E+00 

0.00E+00 
≈ 0.00E+00 

0.00E+00 
≈ 0.00E+00 

0.00E+00 

F3 
8.41E03 

2.94E+00 
- 1.13E03 

7.36E-04 
- 4.74E02 

1.16E-01 
- 1.05E05 

6.68E-05 
- 1.20E07 

3.38E-07 

S
im

p
le

 M
u

lt
im

o
d
a

l 

F
u

n
ct

io
n

s 

F4 
1.64E+01 

2.88E+00 
- 6.25E01 

1.46E+00 
- 3.05E+00 

1.34E+01 
- 4.46E+00 

2.40E+01 
- 1.49E02 

1.27E-02 

F5 
2.00E+01 

1.29E-04 
≈ 

2.00E+01 

7.17E-05 
≈ 

2.03E+01 

9.88E-02 
- 

2.00E+01 

5.42E-06 
≈ 

2.00E+01 

2.00E-03 

F6 
1.64E+01 

1.28E+00 
- 

1.82E+01 

1.72E+00 
- 

5.16E+00 

2.01E+00 
≈ 

6.30E+00 

2.33E+00 
- 

5.36E+00 

1.86E+00 

F7 
3.75E02 

1.40E-01 
- 

0.00E+00 

0.00E+00 
+ 

8.46E04 

1.59E-03 
+ 

5.99E03 

8.69E-03 
+ 

8.66E03 

1.34E-02 

- 5 4 3 4 

 + 0 2 2 1 

 ≈ 2 1 2 2 

 "-", "+", and “≈" indicates that the success of the corresponding technique is worse than, better than, 

and similar to ICDEOA, respectively. 

CONCLUSION 

ICDEOA, proposed in this paper, aims to tackle with the premature convergence 

problem of reproduction operator of CDEOA. We employed probabilistic repositioning 

operator to balance the intensification and diversification of search space. ICDEOA was 

compared with three state-of-the-art DE counterparts, i.e., FERDE, RSDE, and CDEOA 

and one non-DE counterpart. Simulation results show that overall performance of 

ICDEOA
1
 was superior to, or comparable to, that of the four competitors.  
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