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ABSTRACT. In this study, an octagonal-based self-organizing network’s 
lattice structure is proposed to allow more exploration and exploitation in 
updating the weights for better mapping and classification performances. 
The neighborhood of the octagonal-based lattice structure provides more 
nodes for the weights updating than standard hexagonal-based lattice 
structure. Based on our experiment, the octagonal-based lattice structure 
performance is better than standard hexagonal lattice structure on 
biomedical datasets for classification problem. This indicates that proposed 
algorithm is an alternative lattice structure for self-organizing network 
which give more wisdom to classification problems especially in the 
biomedical domains. 
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INTRODUCTION 
SOM has been known as clustering, classification and optimization algorithm in artificial 

neural network (ANN). Other types of ANN’s architecture such as backpropagation (BP), is 
good for classification problems but slow in convergence time (Shamsuddin, Darus, & Su-
liman, 2002; Shamsuddin, Hassan, & Hua, 2012; Hassan, Quo, & Shamsuddin, 2012). While, 
Kohonen self- organizing map (SOM) algorithm provides high to low dimensional mapping 
architecture which involves competitive, cooperative and adaptive scheme. However, stand-
ard SOM suffers from a number of serious limitations that hinders its performance, particular-
ly in pattern clustering or pattern classification (Weijian & Fraser, 1999). Furthermore, the 
performance of SOM depends heavily on optimal combination and initialization of weight 
initialization, input sequence, best matching unit (BMU), distance function, neighborhood 
function, adaptation rule, learning rate, network size, network architecture, accuracy test, 
learning mode, convergence and termination criteria. Consequently, those parameters can 
improve the quality of network mapping, training time, convergence time and accuracy (Nour 
& Madey, 1996).  The quality of Kohonen map is also determined by its lattice structure since 
the weights of each neuron in the neighborhood will be updated beyond the lattice area. 
Therefore, we proposed an octagonal-based SOM lattice structure which so-called OctaSOM 
for better mapping and classification performances. 
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The remainder of this paper is organized as follows: next section describes the related 
work on SOM algorithm; followed by the explanation on the proposed method, experimental 
result and analysis. Finally, conclusion of the study. 

RELATED WORK 
Self Organizing Map (SOM) was first introduced by von der Malsburg (1973) and pre-

sented by Professor Teuvo Kohonen in 1982. The goal of SOM network is to map high di-
mensional input signal into a simpler low dimensional discrete map. SOM are based on com-
petitive learning, where the output nodes compete among themselves to be the winning node 
and the only node to be activated by a particular input observation (Hayin, 1999). Conven-
tionally, SOM learning algorithm is synonym with the clustering concept due to the adapta-
tion process which produces a group of output patterns. The process of SOM training can be 
categorized either unsupervised or supervised. Supervised SOM contains actual input signal 
and a vector which predetermines the output class; pre-determine class of each input signal in 
the training set. These corresponding class values must be used during training. During 
recognition of new sample, only its single part is compared with the corresponding part of the 
weight vectors. On the other hand, the unsupervised SOM learns by making up a map topolo-
gy and preserving representation of the statistical distribution of all input data. SOM’s algo-
rithm exhibits three characteristic processes which is competition, cooperation and adaptation. 

Many studies have been done on comparing the lattice structure of SOM, for instance, 
comparative study on standard SOM and Spherical SOM (Brennan & VanHulle, 2007; Hung, 
2008; Matsuda & Tokutaka, 2011), an Emergent SOM (Poelmans, Elzinga, Viaene, Dedene, 
& Hulle, 2009) while enhanced hexagonal SOM (Bariah, 2007;Hassan & Shamsuddin, 2011). 
Hexagonal lattice structure is good for image processing since the structure can make the 
image pixel uniform to each other. While does not favor to horizontal or vertical directions 
(Middleton, Sivaswamy & Coghill, 2001; Kohonen, 2001). Spherical and Torus SOM struc-
tures are focus on topological grid mapping structures rather than improvement on lattice 
structure. The aim of these topological structures is to eliminate the border effect issues and 
generally apply in clustering and visualization area (Marzouki & Yamakawa, 2005; Nakatsu-
ka & Oyabu, 2003; Matsuda, Tokutaka, & Oyabu, 2009). The plane lattice gives a better view 
of the input data as well as a closer links to edge nodes that makes the 2D visualization of 
multivariate data possible using SOM’s code vectors (Kihato, Tokutaka, Ohkita, Fujimura, 
Kotani, Kurozawa & Yoshio, 2008). 

From previous studies, it is well known that using a neighborhood function with a large 
width is effective in creating an ordered map from a very random initial condition (Aoki & 
Aoyagi, 2007). A narrow neighborhood function can cause topological defect; kink state and 
network map twisted for one dimensional and two dimensional maps respectively. Therefore, 
in many cases, the width of the neighborhood function is initially set to be large, such as half 
the width of the array of units, and is gradually decreased to a small final value. Hence, in this 
paper, we proposed an octagonal-based lattice structure, so-called OctaSOM as an alternative 
presentation for SOM lattice structure. The detail explanation is given in next section. 

OCTAGONAL-BASED SELF ORGANIZING MAP (OCTASOM) 
In this study, an octagonal-based lattice area formulation is presented in equation (1). Un-

like conventional hexagonal lattice as in equation (2), a neighborhood of the proposed formu-
lation is given, where the neighborhood function, )(tOct4 is used instead of the neighborhood 

width, )(tHex4 . Since )(tD is a threshold value, it will decrease gradually as training pro-
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gresses. For this neighborhood function, the distance is determined by considering the dis-
tance of each dimension. The dimension with the maximum value is chosen as distance node 
from BMU, )( jd . )(tOctV and )(tHexV corresponds to the width of an octagonal and hexago-
nal-based lattice, respectively. 
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where )(tOctV is standard octagonal lattice, )(tHexV is standard hexagonal lattice, )(tV is 
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The weights of all neuron within this improve octagonal area are updated with 1)(  4 tOct , 
while the others remaining unchanged. As the training progresses, this neighborhood gets 
smaller, resulting to the neurons that are very close to the winner, and will get updated to-
wards the end of the training. For neighborhood width, radius is reduce with exponential de-
cay function, 
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where 0V is initial radius, O is maximum iteration and t is current iteration. 

The neighborhood function, )(tOct4 is defined as, 
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For updating OctaSOM: 
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where )(tL is learning rate, )(tV is input vector and )(tx is weight vector at iteration t.     

 

Furthermore, the proposed method will be trained and tested with six biomedical datasets 
(appendicitis, heart, hepatitis, Pima Indian diabetes, Wisconsin breast cancer and mammo-
graphic dataset) from KEEL dataset repository (Alcalá-Fdez, Fernandez, Luengo, Derrac, 
García, Sánchez, & Herrera, 2011). Meanwhile, the sensitivity, specificity and accuracy will 

)12()(8)( 2 �uu ttOct VV
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be used as classification performance measurements. Thus, the experimental result and analy-
sis will be discussed in next section. 

EXPERIMENTAL RESULT AND ANALYSIS 
In this study, the proposed method and standard hexagonal lattice structure (HexaSOM) 

are trained and tested using 10-fold cross validation. The classification analysis is presented 
in Table 1 with performance range from 0 to 1 and numbers in bold shows the best value of 
performance evaluations.  

As a result, OctaSOM provides better accuracy than HexaSOM or almost all datasets (Ap-
pendicitis, heart, hepatitis, mammographic and Wisconsin dataset). Meanwhile, HexaSOM 
produce better accuracy, 67.60% than OctaSOM, 66.16% in Pima dataset. The reason is due 
to the imbalance class in Pima dataset where a negative class is 1.85 times more than positive 
class (the result is influenced towards the majority class). Furthermore, large gap between 
feature distributions probably affect the result of Pima dataset.  

Table 1. Classification Analysis 

Datasets Methods 
Performance Measurements 

Sensitivity Specificity Accuracy 

Appendicitis 
HexaSOM 0.828590147 0.5686321 0.82727273 

OctaSOM 0.870729 0.779827 0.87 

Heart 
HexaSOM 0.688271605 0.7283951 0.72839506 

OctaSOM 0.776477 0.779196 0.774074 

Hepatitis 
HexaSOM 0.488675595 0.8125149 0.813188 

OctaSOM 0.862286 0.543429 0.889957 

Pima 
HexaSOM 0.676943109 0.4145954 0.67608137 

OctaSOM 0.65486 0.595955 0.661641 

Mammographic 
HexaSOM 0.669356734 0.663587 0.67195338 

OctaSOM 0.750774 0.750324 0.747396 

Wisconsin 
HexaSOM 0.721333023 0.4844751 0.72172737 

OctaSOM 0.978731 0.968289 0.978213 

 

CONCLUSION 
In this study, we proposed an octagonal-based Self Organizing Map (OctaSOM) for better 

mapping quality. The aim is to generate various perspectives on SOM’s neighborhood lattice 
structure for classification problems. Hence, the OctaSOM successfully generates promising 
result in terms of sensitivity, specificity and accuracy particularly on biomedical area.  
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